

OBJECTIVES

What is Burn?

Causes of Burns

Assessment of burn injury

Management of burn victim

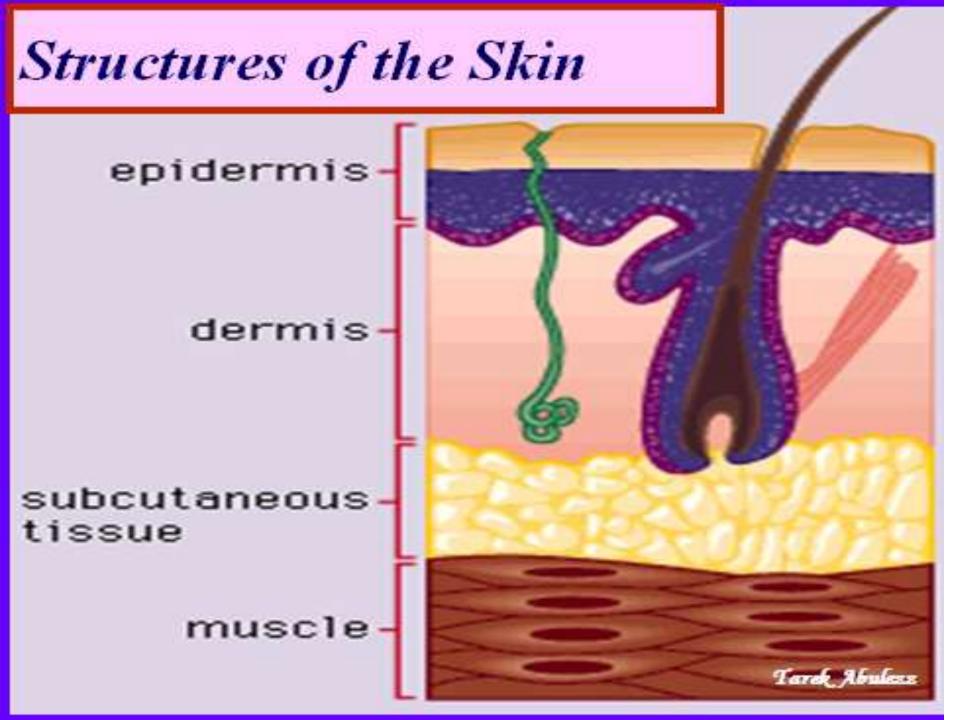
Burn wound care & complications

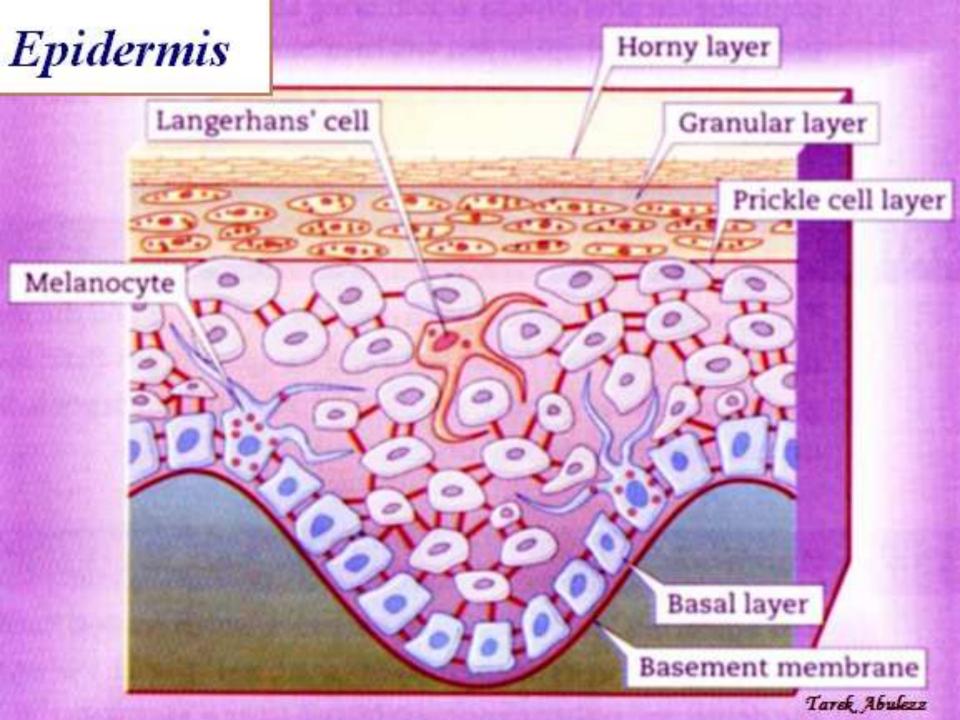
Definition

Burn is a coagulative

necrosis of tissues (mainly the skin)

induced by **Thermal energy**, such as heat, chemicals, electricity or radiation.


Skin Anatomy


Skin is the largest organ in the body (17% of body weight).

Layers of the skin

- Epidermis nonvascular outer layer of skin.
- Dermis: 40-folds thicker than epidermis.
 - It consists of connective tissue with blood vessels, nerve endings, hair follicles, sweat and sebaceous glands.

When dermis is destroyed all skin sensations are lost.

Functions of the Skin

- Identification
- Cosmetic Appearance
- Production of Vitamin D
- Sensations of touch, pain and temperature
- Maintenance of Body Temperature
- A protective Barrier
 - Protection from environment UV radiation
 - Prevents evaporative water loss
 - Protection from microorganisms

Functions of the Skin

Maintenance of Body Temperature

Skin is the air-condition of the human body

Protective Barrier

Functions of the Skin

Evaporative water loss

Microorganisms

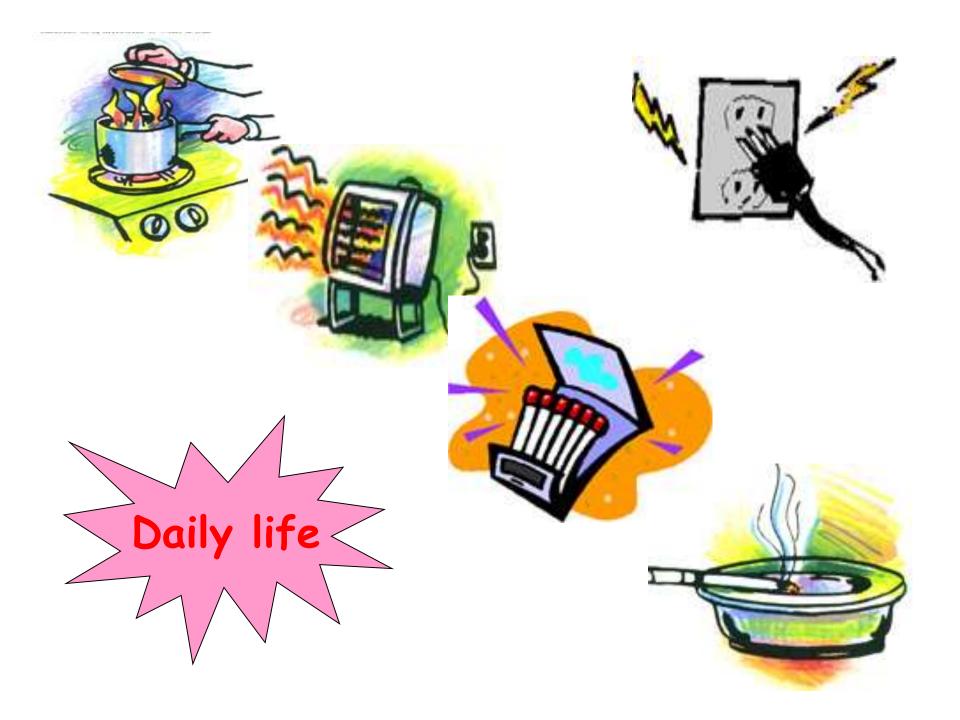
Body fluid loss

Skin is the shield of human body

Causes (Types) of Burns

Causes (Types) of Burn Injuries

- Contact Heat burns
- Cold thermal injury
- Chemical burns
- Electrical burns
- Mechanical (Frictional) trauma
- Smoke & inhalation injury
- Radiation


Contact Heat Burns

(most common)

Dry Heat: Wet Heat:

- Contact
- Flame

- Liquids (Scald)
- Gases (Steam)

Chemical

- Strong acids or alkaloids
 - -i.e. household cleaning products

Management specific to chemical involved

Electrical

Contact with an electrical current
 Open wiring or being struck by lightening
 Pediatrics: chewing on electrical
 cord or placing object in outlet

Require some different management

Cold Injuries

Frostbite

- Don't forget all burns not from heat !!
 - Injury due to freezing & freezing of intracellular fluid
 - Ice crystals puncture the cells and destroy tissue
 - Can result in amputation

Radiation

Prolonged exposure to ultraviolet rays of the sun

Other sources: occupational or medical therapies

Burn Statistics and Epidemiology (WHO 2004)

 Approximately 90 percent of burns occur in low to middle income countries

 The incidence of burns in low income countries is 1.3 per 100,000 population compared with an incidence of 0.14 per 100,000 population in high income countries (Ten folds)

Burn statistics in Egypt

- 0.1% of population is affected by major burns.
- Burn is the 2nd leading cause of accidental death (after MVA).
- About one third need later reconstruction.
- The average hospital stay is 45 days.

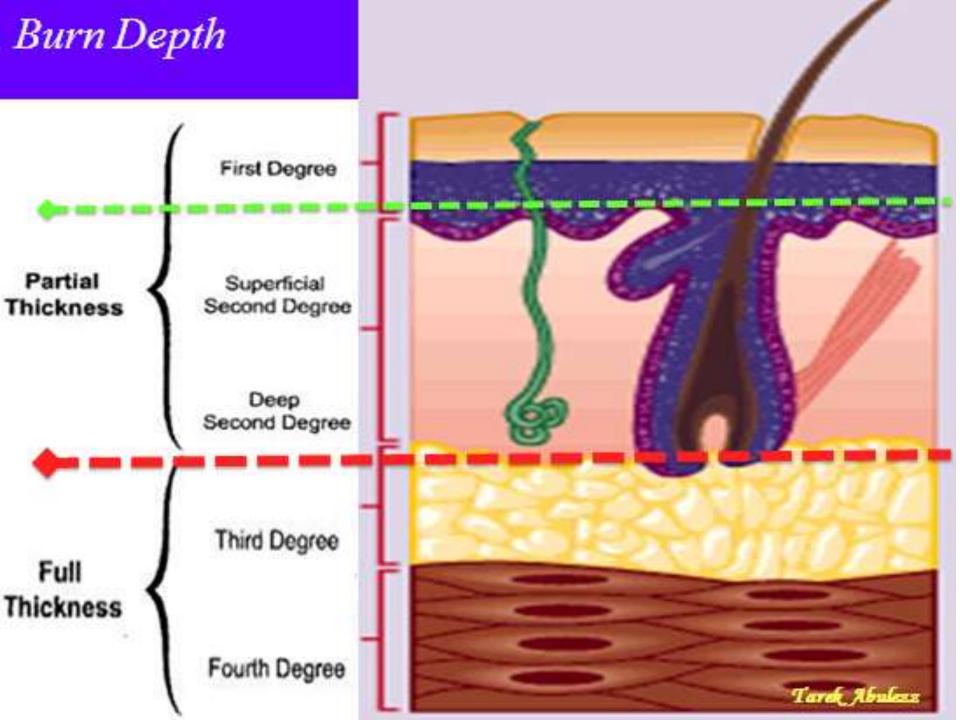
Burn statistics in Egypt

- Domestic causes account for 75% of burns.
- The kitchen is the most frequent area, the second area is the bathroom
- Children are the majority of admitted patients.
- Complications are greater after the age of 60.

Assessment of

Burn injury

Assessment of Burn Injuries


Depth of Burn

Extent of Burn

Cause of Burns

Classification of Burn Injuries

Epidermal (Superficial) Dermal (partial)

Full-Thickness

Superficial Dermal

Deep Dermai

Tarek Abulesa

Superficial (Epidermal) burns

Blistering and peeling in a few days.

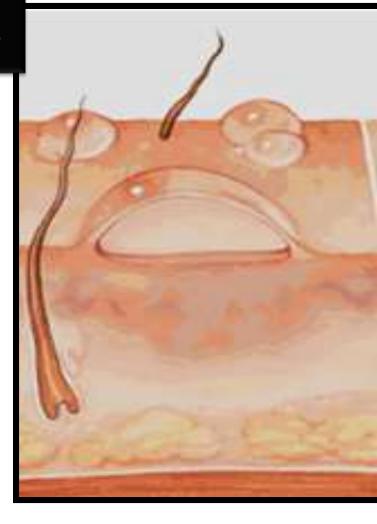
Heals in 3-7 days- generally no scaring

Topical creams provide relief.

Maintain hydration orally.

No need for antibiotics

First degree burn is not calculated !!!


Dermal (2nd degree) Burns

- Two Types
 - -Superficial (2nd Degree) dermal burn: involving the superficial portion of dermis

—Deep (2nd Degree) dermal burn: involving the deep reticular dermis

Superficial Dermal Burns

- Involves upper 1/3 of dermis
- Wound characteristics:
 - **➤** Red to pink
 - > Extremely painful
 - Wet and weeping wounds
 - Mild to moderate edema
 - ➤ Thin-walled, fluid-filled blisters

Superficial Dermal Burns

Wound Healing:

- In 2 weeks (spontaneous)
- Minimal scarring
- Minor pigment discoloration may occur

Deep Dermal Burns

- Blisters and bullae
- Blisters provide biologic dressing and comfort.
- Heals in 14-21 days
- Once blisters break, red raw surface will be very painful.

Deep Dermal Burns

- Wound Appearance:
 - Mottled: Red, pink, or white area
 - Moist with Moderate edema
 - Thick-walled blisters (bullae)
 - Painful; usually less severe
- Spontaneous Healing ? ~ 2-6 weeks
 - Hypertrophic scarring
 - Formation of contractures
- Treatment of choice: surgical excision & skin grafting

Full thickness burn

Involves the entire epidermis and dermis and may extend deeper to include muscle, tendons & possibly bone (electric burn).

- Wound Appearance:
 - Dry, leathery and rigid + Eschar (hard and inelastic)
 - Red, white, yellow, brown or black
 - Variable edema
 - Painless & insensitive to palpation
- No spontaneous healing
- Treatment: Surgical excision & skin grafting

Full thickness burn

Initial management same as partial thickness.

Dressing ... debridement and skin grafts.

Outer zone might be partial thickness.

 Full-thickness burns and deep partial thickness burns are initially anesthetic because nerve endings are destroyed.

 Superficial partial thickness burns are painful as the nerve endings are still intact.

Summary of burn classification by depth

Degree		CAUSE	APPEARANCE	PAIN	HEALING	SCAR
SUPERFICIAL (Epidermal)		Sunburn, Radiation	Red, painful, no blisters	Moderate -to - severe	7-10 days	No scarring
	SUPERFICIAL Dermal	hot liquid, flash flame	wet, pink, + blisters	severe	10-20 days	minimal
Partial (DERMAL)	DEEP Dermal	chemicals, direct contact flames	Wet-dry, pink-white thick blisters	minimal	2-6 weeks better grafted	moderate or severe
FULL- THICKNESS		chemicals, flames, Explosion, with very high temp.	dry, white Leathery, or char	none	need graft	Mild - severe depending on timing and type of graft

Pathophysiologic Changes

Zone Of Coagulation

Area of coagulation affected

Zone Of Stasis

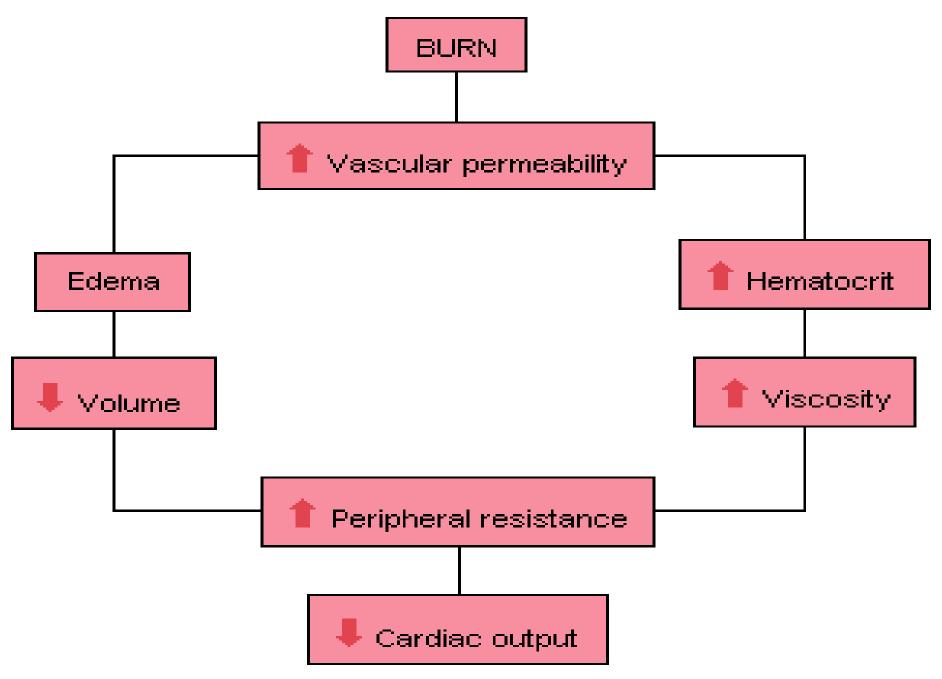
Capillary occlusion, decreased perfusion Edema formation 24-48 hrs

Zone Of Hyperemia

Increased blood flow results from inflammatory processes

Pathophysiology

Loss of capillary tone


Release of vasoactive agents

Moving of fluids and substances like proteins

from the intravascular to interstitial space

Plasma loss and Intravascular volume loss

Diminished tissue perfusion

Hemodynamic changes

Hypovolemia

Peripheral vasoconstriction

Hemoviscosity

Burn Shock

Metabolic Changes

- Catecholamines are the major mediators of the <u>hypermetabolic</u> response to burn injury.
- "Burn fever" is common and it depends on burn depth and percentage.
- Fever spikes of 38.8°C 39.4°C are common.
- Healing a large surface area requires much energy; glucose is the primary metabolic fuel.

Metabolic Changes

 Total body glucose store is limited (liver and muscle glycogen) and is exhausted within few days.

 Despite all nutritional support to burn victim, it is hard to counteract a negative nitrogen balance.

ONLY Early closure of the burn wound makes a positive nitrogen balance.

Immunologic change

- The loss of the skin barrier and presence of eschar favor bacterial growth.
- Hypoxia, acidosis, and thrombosis of vessels in the wound area impair host resistance to pathogenic bacteria.
- Burn wound sepsis the wound will be fully colonized in 3 to 5 days - Seeding of bacteria from the wound may give rise to systemic septicemia.

Gastrointestinal changes

• Sympathetic response to burn peristalsis and gastric emptying time (nausea, vomiting).

 Ischemia of the gastric mucosa and other etiologic factors put the burn patient at risk for duodenal and gastric *Curling's* ulcer.

Classification of Burn Injuries

Classification of Burn Injuries

- Extent of Burn Injury
 - Total Body Surface Area (TBSA) Burned

Palm Method

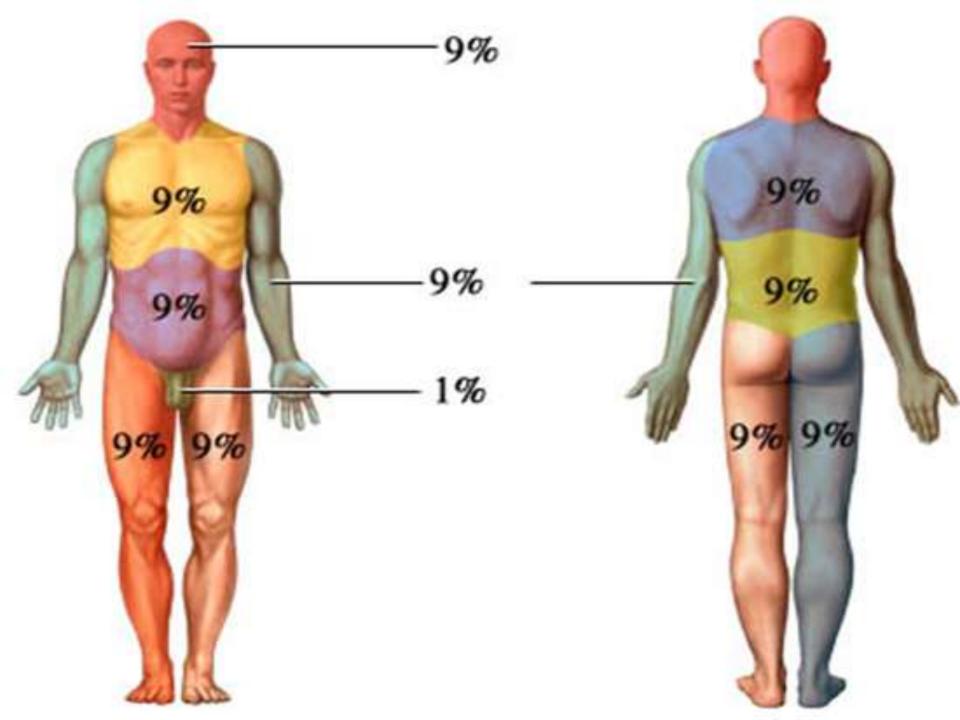
Rule of Nines

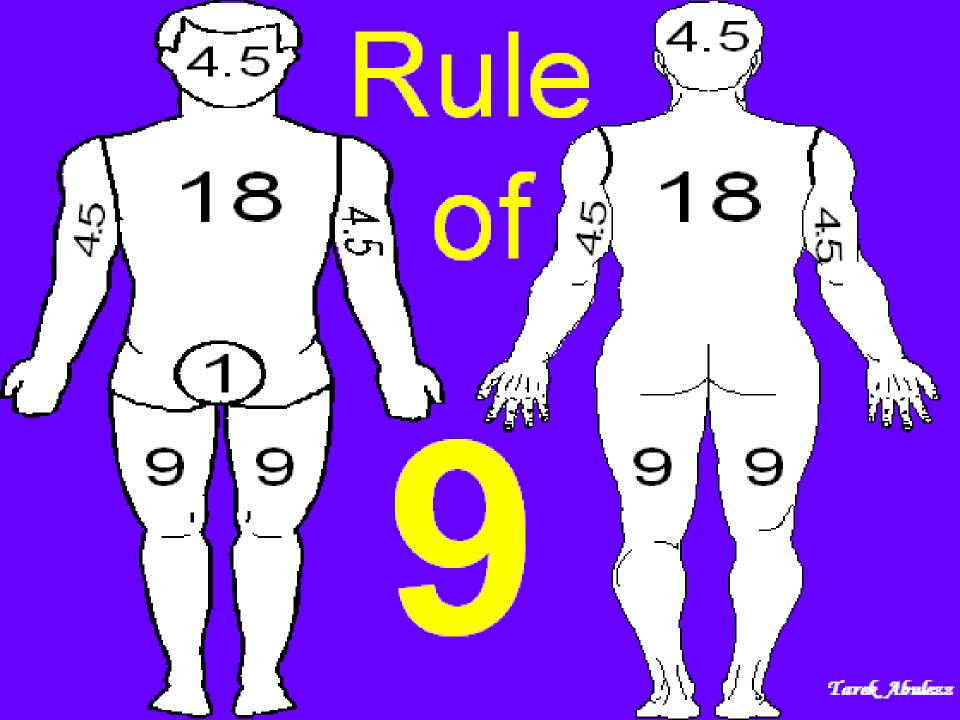
Lund-Browder Method

Palm Method

 A quick method to evaluate scattered or localized burns

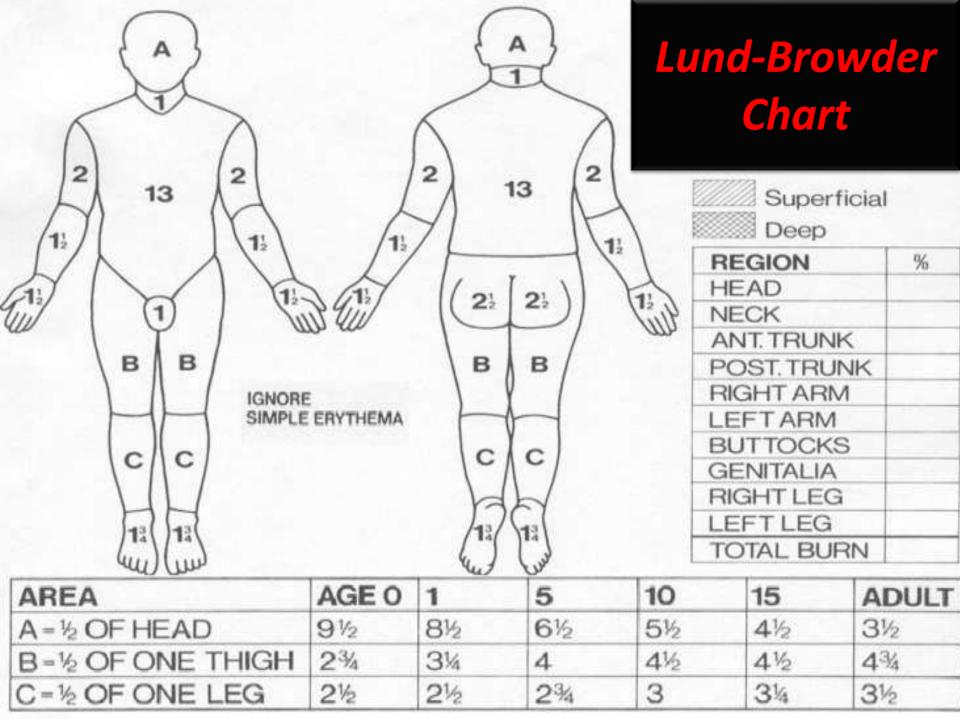
Patient's palm = 1 % TBSA


Rule of Nines


 A quick method to evaluate the extent of burns

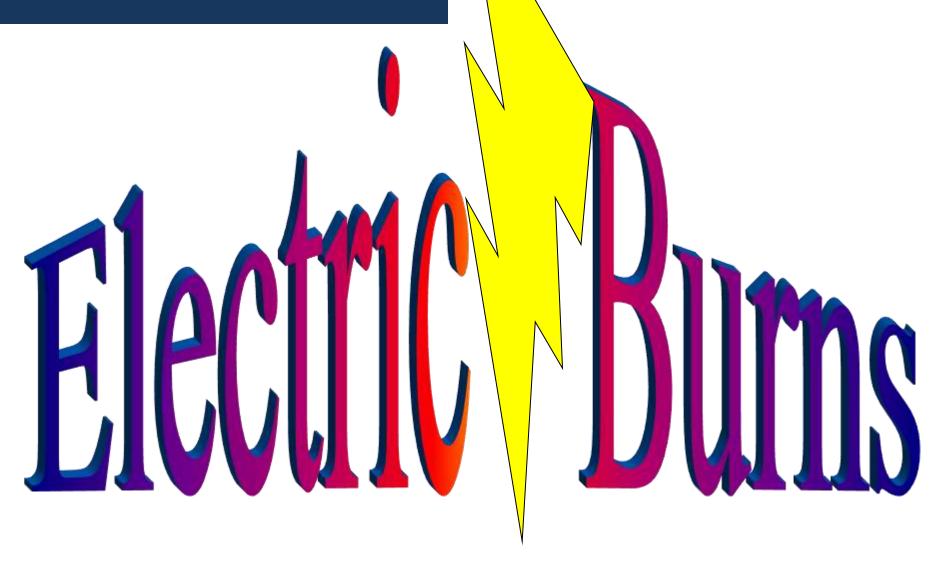
 Major body surface areas divided into multiples of nine.

Modified version for children and infants because a relatively more area is taken up by the head and less by the lower extremities.



Lund-Browder Method

Can be used for adults, children
 & infants


 Most Accurate; based on age (growth)

Classification of Burn Injuries

Special Burn Injuries

Electrical Burn Severity

- The severity of an electrical injury is most closely correlated with the amperage and voltage of the current.
- A common phenomenon is an apparent progressive loss of viable tissue, occurring in the first few days after an electrical injury.
- The explanation for this phenomenon is a delayed thrombosis of microvasculature caused by the electrical current.

Electrical injury can cause:

Severe metabolic acidosis.

Cardiac arrest or arrhythmias.

Fractures of long bones and spines

Myoglobinuria with acute renal failure

Long-term Eye complications...as cataract

Electrical Burn Severity

- In young children (1 to 2 years old), burn involves the lips, tongue, or oral mucosa and underlying bone.
- Sucking an extension cord is responsible for > 50% of the injuries, and biting on an electric cord accounts for 30%.

 The hands are burned in older children (playing in the electric plugs with a steel pins).

Electrical Burn in children

These burns often occur at the corners of the mouth caused by biting on an electrical cord.

Electrical Burn Low-Tension injury

Entry & exit wounds

Special Burn Injuries

Chemical Burns

Chemical Burns

 With chemical burns, tissue destruction may continue for up to 72 hours afterwards.

 It is important to remove the person from the burning agent or vice versa.

 The latter is accomplished by copiously irrigating the affected area with copious amounts of water.

Chemical Burns

- Strong acids
 - i.e. household cleaning products- e.g. "Loloa"
 - sulfuric acid
 - Phenic (carbolic acid)
- Strong alkaloids
 - Lime, potassium hydroxide, and sodium hydroxide.
 - Cement (calcium oxide)
- Hydrocarbons
 - like gasoline, kerosene, or diesel fuel can produce a fullthickness injury.

Mechanism/Type: Chemical Burn

Mechanism/Type: Chemical Burn

Mechanism/Type: Chemical Burn

Special Burn Injuries

haaalalalur

Lung Burn (Inhalation Injuries)

 Upper airway edema is the earliest consequence of inhalation injury.

 It may occur during the first 6 to 24 hours after injury.

 Early obstruction of the upper airway is managed with intubation.

Inhalation Injuries

- Airway
- Facial and scalp burns
- Singed nasal hair, eyebrows
- Sooty sputum
- Soot, swelling, redness
- Hoarse voice
- Wheezing, persistent cough

Repeated Assessments

Inhalation Injuries

Management of Bum Victim

What are the First Aid Measures?

When to Refer to a Burn Center?

How to manage the victim?

How to manage the burn wound?

How Can we prevent burn?

First Aid Measures for Burn victim

Stop the burning process

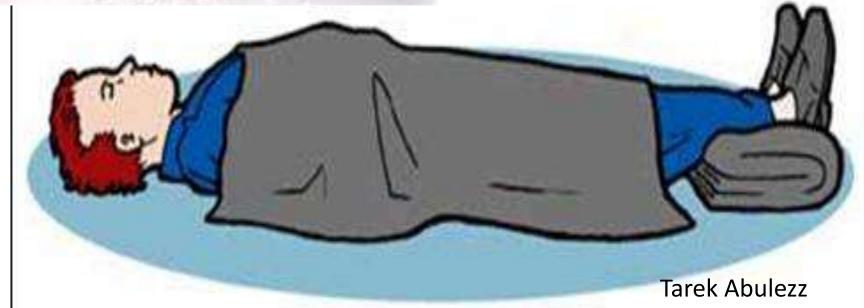
Run cool water over burned area

Remove all clothing off the burned area

Cover with a clean dry cloth

First Aid Measures for Burn victim

- Avoid shock by elevating the legs
- Keep the victim warm with a clean sheet or blanket


Encourage the victim to drink fresh drinks

First-Aid Measures for a burn

- Remove all clothing, shoes, diapers, metal, Rings jewelry/body piercings
- Cool the burn briefly with cold water For 5 minutes.
- No ice ... No milk ... No Eggs ... No Tooth Pastes
- No Antibiotic "Burn" Spray
- Remove wet clothing and items
- Cover with clean, dry covering

First Aid Measures for Burn victim

First Aid Measures for Burn victim

• **DO NOT** apply cold water to more than 20% of an adult's body surface (10% for children) and don't apply for > an 10 min ... > " **Hypothermia**".

• **DO NOT** apply tooth-paste, grease, butter, spray, coffee, egg etc....

• **DO NOT** break blisters ... Intact blisters are excellent dressings. Cover a ruptured blister with antibiotic ointment and a dry clean dressing.

?? Antibiotic Spray ??

 The indiscriminate use of combined antibiotic spray should be discouraged ...its effectiveness should be balanced with its potential toxicity

First Aid Measures for Burn victim

Electrical burns

- Find source and turn it off
- Do not approach victim until you are sure power is turned off

Chemical burns

- If the area is still painful, continue to flush until pain stops.

First Aids for burn victim: Do's

- Extinguish flames.
- Stop the burning process (remove clothing).
- Use cool running water to cool the burn.
- In chemical burns, irrigate with water.
- Wrap the patient in a clean cloth or sheet and transport to the nearest appropriate facility for medical care.

(WHO recommendations)

First Aids for burn victim: Don'ts

- Do not start first aid before ensuring your own safety.
- Do not apply paste, oil, or raw cotton to the burn.
- Do not apply ice because it deepens the injury.
- Avoid prolonged cooling with water (hypothermia).
- Do not open blisters until the patient has been placed under appropriate medical care.

(WHO recommendations)

وصايا المصاطب: الحروق

- ابعد ريحة الصابون عن الواد لحسن يشم.
 - أوعى الواد يشرب مية
 - روح الصيدلية هات بخاخة حرق
 - ما تنشغلشي ما دام الحرق في الجلد بس
- أحسن دكتور الدكتور "عدنان" بتاع الجلدية

• الصابون مطهر و مفيد لغسيل الجروح ومنها الحروق (الجروح مش بتشم).

• الحرق نوع من أنواع الجروح .. محتاج جراح

• لا داعی لمنع مصاب الحروق من شرب الماء بل شرب السوائل مطلوب و مفید جدا. • الحرق فى الجلد بس ... بس برضه خطير – التكييف مش راح يشتغل و الشبابيك مفتوحة.

• أسوأ شئ ممكن تحطه على الحرق البخاخة

• المرهم مش مخلى الحرق ينشف ... طيب ينشف ليه؟؟ Moist environment helps healing

Burn Referral Criteria

- PARTIAL THICKNESS BURNS
 - •>10% of TBSA in <10yrs old & >50yrs old.
 - •>20% of TBSA in other age groups.

FULL THICKNESS BURNS > 5% in any age group

Burn Referral Criteria

ELECTRICAL BURNS
CHEMICAL BURNS
INHALATION BURNS

PRE-EXISTING MEDICAL ILLNESS (D.M., Hepatic)
CONCOMITANT TRAUMA (Fractures)

BURNS affecting Face, eyes, ears, hands, feet, genitalia, perineum or major joints.

Management of Burn Victim

A = Airway - patency

B = Breathing- check for signs of inhalation burn.

C = Circulation- presence and quality of pulses

D = Drug therapy and Dressing

E = Exposure and Examination

F = Fluid Resuscitation and Feeding

Drug Therapy- Opoid analgesics

- IV access (Multiple)
- Pain management
 - Once vital signs have been stabilized, pain medication should be used as indicated as they can combat shock.
 - Morphine or Fentanyl Drip.
- IV is used due to:
 - GI function is slowed or impaired because of shock and/or paralytic ileus
 - I.M. injections will not be absorbed well (sluggish circulation)

Drug Therapy - **Beta Blockers**

 Patients with burns > 40% are always catabolic, and their metabolic derangement persists for at least a year after injury.

 Propranolol reduces hypermetabolism, heart rate, oxygen demand and resting energy expenditure.

 Beta-blockers reduce wound infection rate, and wound healing time and thus improving mortality.

Drug Therapy- Vitamin C and antioxidants

High dose vitamin C given I.V. in the first 24 hours after burn has been documented to ameliorate burn inflammatory process and promote healing.

Other antioxidants like Vit E, Zink and vit A are recommended

Drug Therapy- gastric protector- anti-tetanus

Curlings ulcer prophylaxis (Peptic Ulcer)

An **H2 blocker** or Proton Pump inhibitors

• **!!!** Tetanus ??

Tetanus immunization may be given because of the likelihood of anaerobic burn-wound contamination

Drug Therapy- antimacrobials

Antimicrobial agents

- When systemic antibiotics should be used?
 - Fever, septicemia,
 - Prophylactic ??
 - what spectrum (against gram+ve in the first 3 days.....then anti-Pseudomoneal)

Topical Versus Systemic.

Silver sulfadiazine, Bovidine Iodine.. Honey

Fluid Resuscitation

Goal: To maintain vital organ function while avoiding the complications of inadequate or excessive therapy

Fluid Resuscitation

 Proper fluid management is critical to the survival of patients with extensive burns.

 Proper fluid management aims to maintain good tissue perfusion.

Fluid Therapy - Objectives

HR < 100/minute

Urine output - 0.5-1 cc/kg/hr

Normal sensorium (alert, oriented)

Resuscitation formula's are only an estimate, adjust to individual patient responses

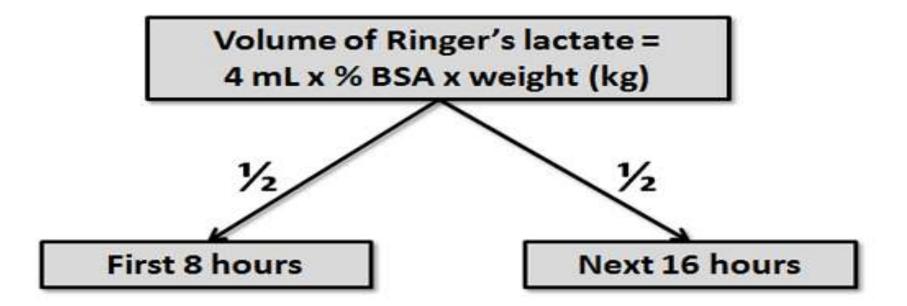
Monitor for Pulmonary Edema

BURN FLUID REPLACEMENT FORMULAS

FORMULA	ELECTROLYTE SOLUTION	COLLOID	WATER	RATE	EXAMPLE: 70 KG/45% TBSA (PER 24 HR)
Evans	1 ml/kg/% TBSA NS	1 ml/kg/%	2000 ml	½, 1st 8 hr; ½, next 16 hr	3150 ml NS 3150 ml colloid 2000 ml water 8300 ml TOTAL
Brooke	1.5 ml/kg/% TBSALR	0.5 ml/kg/%	2000 ml	½, 1st 8 hr; ½, next 16 hr	4725 ml LR 1575 ml colloid 2000 ml water 8300 ml TOTAL
Modified Brooke	2–3 ml/kg/% TBSA LR	None	None	½, 1st 8 hr; ½, next 16 hr	6300–9450 ml LR
Parkland (Baxter)	4 ml/kg/% TBSALR	None	None	½, 1st 8 hr; ½, next 16 hr	12,600 ml LR
Hypertonic formula	Rate based on urine output of 30 ml/hr with hypertonic LR (sodium, 250 mEq/L)	None	None	To maintain urine output	Unknown

Baker, Akhavani & Jallali (2007)

Resuscitation Fluid Needs: First 24 Hours


- Parkland Formula:
 - -2-4 ml RL X Kg body weight X % burn

- First ½ of total volume is given in the first 8 hours
- Remaining ½ of is given over following 16 hours

Crystalloid fluid is keystone, colloid not useful

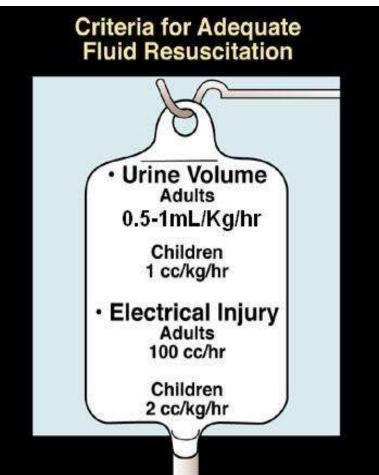
Resuscitation Fluid Needs: First 24 Hours

Parkland Formula

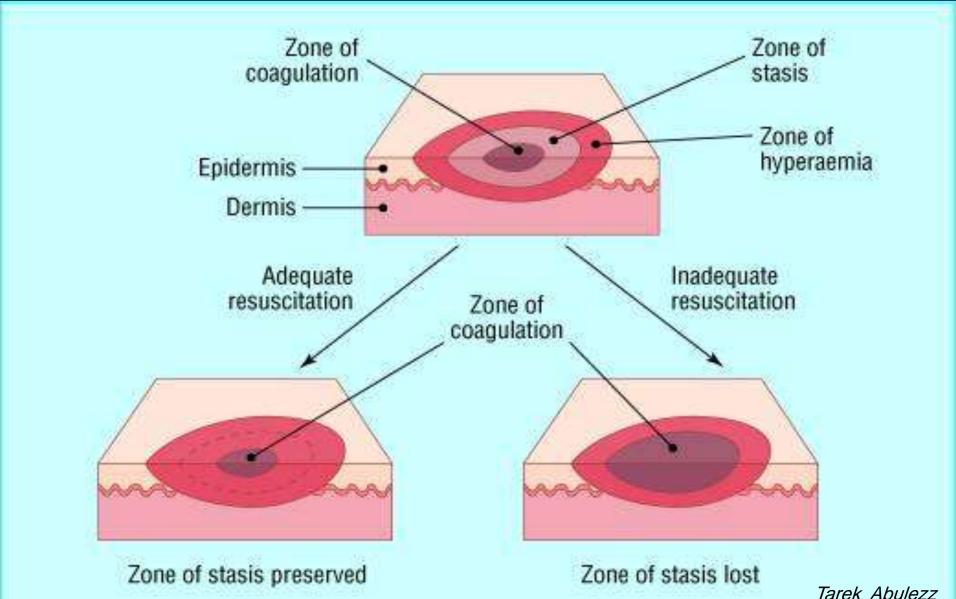
Crystalloid fluid is keystone, colloid not useful

Resuscitation Fluid Needs: 2nd 24 Hours

- Capillary permeability gradually returns to normal
- Colloid fluids started to minimize volume
- Only necessary in patients with large burns (greater than 30% TBSA)
- ❖ 0.5 ml of 5% albumin X Kg body weight X % burn


Assessment of Fluid Resuscitation

Blood pressure: > 100 mmHg


Can be misleading due to edema & vasoconstriction

Heart Rate: <100 B/M
 Tachycardia commonly observed

Urine output:0.5-1 ml/Kg/Hour
 The most reliable guide

Effects of adequate and inadequate resuscitation

 Burn victims need more calories than normal subject support and enhance wound healing.

 Adequate protein intake is required. the protein requirement is increased to 1.5–2.5 g/kg per day in treatment of severely-burned patients.

Vitamins should be supplied in adequate amount.

Selection for Outpatient Care

- Airways must not be compromised.
- Small wound fluid resuscitation is unnecessary
- The patient can take adequate fluid orally.
- Serious burns to the face, hands, or genitals should initially be managed in an hospital.
- The patient and family must be able to support an outpatient care plan.

Enteral Feeding:

 prevents toxic infective complications, particularly those originating in the shock phase in the first hours and...

gives patients a higher level of comfort, thanks also to the palatability of the diet.

Enteral feeding a is the first choice.

 Nutrition should be started within the first 48 h on admission.

Only when enteral feeding is impossible, parenteral nutrition is utilized.

Enteral Feeding

Enteral nutrition has:

reduced the mortality rate,

improved the immune state

Enhanced wound healing and shortened the hospitalization.

Burns Wound

Management

Control cross-contamination.

Adequate stress management.

Avoid hypothermia.

Wound dressing

Sepsis and Antimicrobials

Burn injury is associated with a loss of immunecompetence, and sepsis remains a major cause of death in burns.

Early sepsis (1-3 days post burn) is usually streptococcal or staphylococcal.

Late sepsis is usually due to Pseudomonas, acinetobacter and fungi.

Avoid Cross-Contamination

 Wear caps, masks, gown, gloves wash hands before and after dressing.

Expose, clean, and rewrap less infected areas first.

Look for sources of bacteria in equipment used...like invasive catheters.

Stress Management

 Narcotic analgesic and short-acting sedative should be initiated before burn dressing.

Use intravenous route.

 Antipyretics given before burn care attenuate the fever seen after wound manipulation.

Avoid hypothermia

Overhead heaters,

Warm water,

 Sequential management of the wounds, rather than total patient exposure.

Wound Dressing

 Warm saline may be used to soak adherent dressings to avoid excessive discomfort or bleeding.

 Use separate bowl of saline for clean and contaminated areas.

 Change gloves after washing contaminated areas, especially buttocks and genital area.

Burn Wound Dressing

Burn Wound Dressing

 Open Method - patient's burn is covered with a topical antibiotic and has no dressing.

 Closed Method – burned area is wrapped in a sterile gauze impregnated with topical antimicrobial. Dressings changed according to wound soaking from once/12 hours to once / 2 days.

Burn Wound Care – Closed method

- Most wounds covered with several layers of sterile gauze dressings.
- Special Considerations:
 - Joint area lightly wrapped to allow mobility
 - Circumferential burns: wrap distal to proximal
 - All fingers and toes should be wrapped separately
 - Splints always applied over dressings to maintain limbs in functional positions

Burn Wound Care – Closed method

Daily inspection of the wound

 If gauze is adherent and dry (no exudates), simply change outer dry gauze.

 If soaked with exudates, the dressing should be removed, the wound gently washed with Saline and the dressing re-applied.

Burn Wound Care Cont.,

Debridement of the wound

- May become completed at the bedside with wound care or as a surgical procedure.
- Types of Debridement:
 - Natural
 - Body & bacterial enzymes dissolve eschar; takes a longtime
 - Mechanical
 - Sharp (scissors), Wet-to-Dry Dressings or Enzymatic Agents
 - Surgical
 - Operating room / general anesthesia

Controversial !!!!

Eschar

Management

Eschar Formation

- Skin denaturing
 - hard and leathery
- Skin constricts over wound
 - increased pressure underneath
 - restricts blood flow (when circumferential)
- Respiratory compromise
 - secondary to circumferential eschar around the chest
- Circulatory compromise
 - secondary to circumferential eschar around extremity

ESCHAROTOMY – Upper limb

ESCHAROTOMY- Lower limb

Burn Dressing

Tarek Abulezz

Burn cleansing in the shower trolley

Paraffin Gauze

Paraffin Gauze Dressing is made from open weave leno gauze.... It is *Non-Adherent* to the wound

Paraffin from an occlusive film over the skin, preventing evaporation, thus restoring elasticity of cracked and dry skin.

Paraffin Gauze Dressing can be combined with topical antiseptic and/or antibiotics.

Paraffin Gauze

رباط شاش فازلین طبی أو زیت بارافین مرهم مضاد للىكترىا

Burn Dressing

Burn Dressing

Wound Dressing

Absorb discharge

Alleviate pain

Reduce Infection

Burn Wound Care - open treatment

- Areas such as the face and ears are then treated open, with an ointment to maintain wound moisture.
- Topical antimicrobial creams may be used to control gram-positive bacteria.
- Re-apply ointment two to three times daily.
- Gently wash off crusts, exudates, especially on face and neck with normal saline.

Burns Mortality & Morbidity

Burn Mortality (~5%)

Burn Morbidity & Mortality: Depend on:

Age of patients (Extremes of age < 6 ... > 60)

Percentage of burn (> 40% TBSA)

Inhalation Injury

Associated medical diseases DM

Infection is the most serious threat to further tissue injury and possible sepsis.

SURVIVAL is related to prevention of wound contamination.

- Source of infection is patient's own flora, mainly from the skin, resp. tract, and GI tract.
- Prevention of cross contamination from other patients is the priority!

Complicated Burn Wound Healing

Complicated Burn Wound Healing

Hypertrophic Scarring and Keloids

Disfigurements and Contractures

Leukoderma

Malignant Transformation

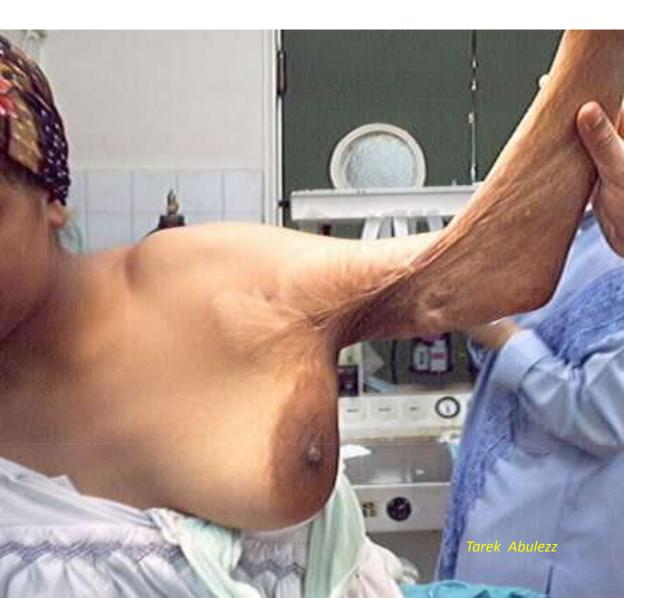
Tarek Abulezz

Hypertrophic Scar Characteristics

Surface erythema.

Raised from wound surface.

Lack of elasticity.


Painful and itchy.

Hypertrophic Scar

Contractures

Contractures

Tarek Abulezz

Contractures - Leukoderma- Hypertrophic scars

Malignant transformation

Drug therapy in brief

- Early Enteral feeding is highly recommended
- IV route is preferred for appropriate drugs.
- Opioids Analgesics to alleviate anxiety
- Vit C along with resuscitation fluids
- H-2 Blockers
- ? B-Blockers
- Antibiotics what, when?

Burns Wound Management

Superficial Partial-Thickness Burn

Dressings/ Exposure (for about 2 weeks)

Deep Dermal Burn

2 weeks dressings. If no better graft. OR early excision and grafting (when stable)

Full-Thickness burn

Debride and graft (when stable)

- IV analgesia before dressing.
- Wash hands thoroughly.
- Ensure warm environment

- Follow aseptic technique in dressing.
- No Antibiotic "Burn" Spray !!
- Oral feeding is encouraged.

Burns

Prevention

Kitchen Floor Safety

Choose floor surface with safety in mind

Use nonslip mats near food preparation areas

Wipe up spills immediately

• Be sure path is clear when carrying or serving food (children, toys, etc.)


Child Burn Prevention Tips

- Keep hot foods away from table edges
- Turn stovetop pan handles inward
- Do not carry hot liquids while holding child
- Never leave children unattended in bathtub
- Position child's face away from faucet

"Stand By Your Pan!"

- Stay in the kitchen to fry, grill, broil or boil
- In case of a grease fire smother with matching pan lid, not by using a fire extinguisher
- In case of an oven fire, turn off oven, close door and wait until oven has cooled down

Electrical Wiring Safety

 Never overload outlets or extension cords

- Have electrician inspect and rewire or replace:
 - Loose appliance plugs
 - Frayed or cracked cords
 - Warm wall switches
 - Overloaded circuits cracked cords

For any question or recommendation: tabulezz@sohag.edu.eg