

Lecture No. 41

Cardiovascular reflexes and effect of exercise

By

Dr. Mohammad Ashraf

Learning objectives

- After the lecture, students should be able to:
 - Describe the Intrinsic and extrinsic reflexes, central and autonomic control of CVS.
 - Describe the effect of exercise and posture on CVS.

Introduction

- An adequate O_2 supply is essential for performance of muscular exercise.
- The resting O_2 consumption (=250 ml/min) may increase 20 times or more during exercise.
- The skeletal muscles at rest receive about 20% of the COP. This increases to 80-90% during exercise.
- The circulatory adjustments during exercise aim at increasing the muscular blood flow.
- This can be increased as result of both:
 - ➤ Systemic circulatory changes.
 - ➤ Local changes in active muscles.

Systemic circulatory changes

During muscular exercise the following systematic changes occur:

1) Increase cardiac output

Through an increase in both SV & HR

2) Increase arterial blood pressure

Through an increase in COP & changes in PR

Causes of increased SV during exercise

1- increase preload

2- increased contractility

Sympathetic activity

→ venoconstriction →
increased venous
pressure → increasing
VR to the heart.

Sympathetic stimulation

Increase in VR (Starling law)

Skeletal muscle pump

Increase rate and depth of respiration

Arteriolar dilatation at skeletal muscles

Causes of increased heart rate during exercise

• *Sympathetic stimulation* by impulses from the cerebral cortex and hypothalamus

• Increase the venous return (by Bainbridge reflex).

• Hyperventilation

4 Stimulation of chemoreceptors

5 Alam smirk reflex

6 Adrenaline secretion

Increase body temperature.

increased ABP during exercise

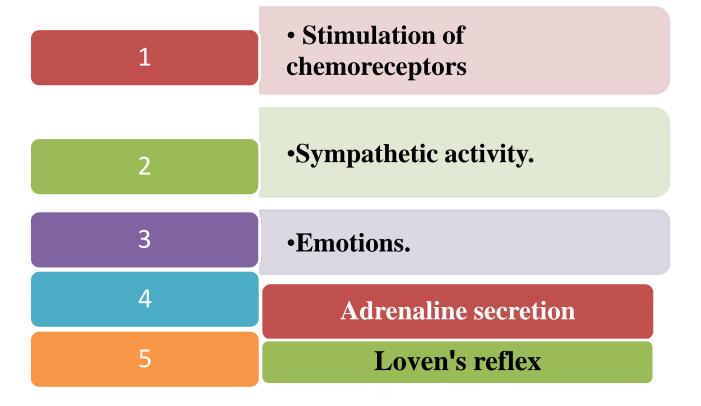
ABP is α COP (SV & HR) and PR

↑ SV → ↑ SBP mainly
while; HR and PR mainly affect
the DBP

During exercise, SV↑→↑SBP

DBP changes according to the type of exercise.

• In exercises requiring **isotonic contractions**, the arterioles at skeletal muscles dilate \rightarrow \downarrow PR \rightarrow \downarrow DBP (water hammer pulse results).


In exercises requiring isometric contractions, all the arterioles are constricted and compressed by the contracting muscles → ↑
 DBP.

• In areas other than skeletal muscles, generalized vasoconstriction occurs specially in blood vessels supplying the GIT and skin so blood is redistributed to the active areas (skeletal muscles and the heart).

• When the exercise is prolonged and body temperature increases, cutaneous VD occurs to help heat loss. This decreases the blood flow to the skeletal muscles and fatigue is likely to takes place.

Causes of generalized VC during exercise

Local changes in active muscles

There is VD of the muscle arterioles: that increases the skeletal muscle blood flow.

Causes of VD of skeletal muscle blood vessels:

Sympathetic stimulation

Accumulation of the vasodilator metabolites (K⁺ and adenosine)

Local hypoxia (\downarrow O₂), hypercapnia (\uparrow CO₂) and acidic metabolites as lactic acid (\uparrow H⁺)

Excess heat liberated during exercise

Local changes in active muscles

Relaxation of the precapillary sphincters

More blood flow to the muscles

increase in the capillary pressure

widening of pores

increase filtration of plasma carrying O₂ and nutrients to the contracting muscles.