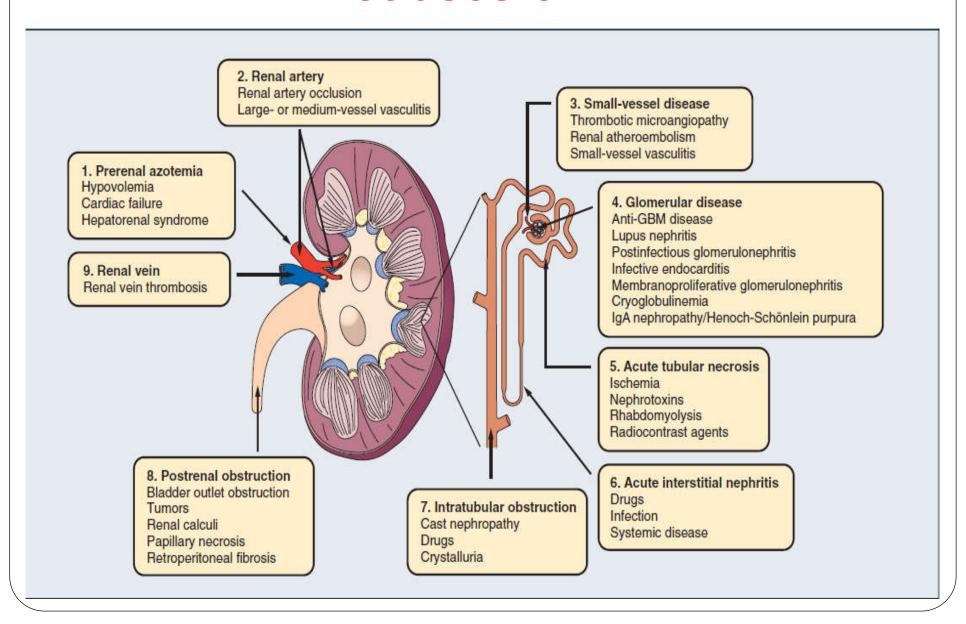
Acute Renal failure (Acute kidney injury)

Ву


Dr. Naiel Abdel_hameed

Acute Renal failure

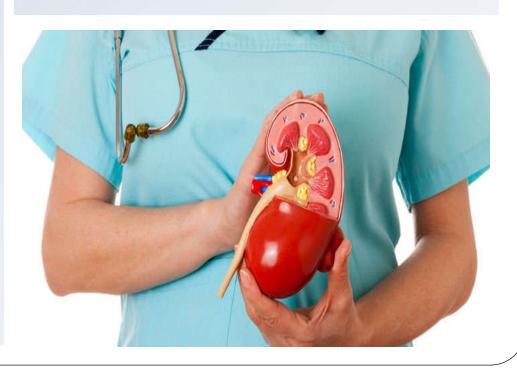
• Definition:

• Acute kidney injury (AKI) or acute renal failure (ARF), was previously defined as a rapid deterioration of renal functions resulting in the accumulation of nitrogenous wastes such as urea and creatinine. However, immediately after a kidney injury, BUN or creatinine levels may be normal, and the only sign of a kidney injury may be decreased urine production.

Causes Of AKI

Causes of AKI can be categorized into:

Pre-renal (functional)


- Hypovolemia, e.g. bleeding, gastrointestinal losses
- Sepsis
- Cardiac arrhythmias
- Myocardial infarction
- Renal artery stenosis

ntrinsic renal (damage)

- Prolonged hypoperfusion causing tubular injury
- Infiltrative disease, e.g. myeloma
- Nephrotoxins
- Glomerulonephritis
- Interstitial nephritis
- Rhabdomyolysis

Post-renal (functional)

- Renal stone disease
- Pelvic masses, e.g. cervical cancer
- Prostatic hypertrophy / cancer
- Urethral stricture

Causes:

- Ischemic causes (Prerenal factors if not corrected rapidly)
 Prolonged pre-renal cause for ARF → Tubular ischemia & necrosis
- 2. Toxic causes :

Endogenous:

- Hemoglobin (Hemolytic anemia).
- Myoglobin (Rhabdomyolysis).
- Bilirubin Nephropathy in obstructive jaundice.

Exogenous:

- Antibiotics: Aminoglycosides, Amphotercin B
- NSAIDs
- Radio-contrast dye
- Heavy metals: Arsenic, Mercury.

- Pathophysiology: 3 stages
 - **1.** Oliguric phase: Lasts few hours to weeks:
 - Oliguria (↓ urine output < 400 cc/d) due to :
 - a. Obstruction of tubules by epithelial casts.
 - b. Afferent vasoconstriction due to excess renin activation.
 - Na : decreased (dilutional hyponatremia)
 - **K** : Hyperkalemia.
 - Phosphorous : increased
 - Ca : \downarrow or may still normal.
 - H+ ions, urea & creatinine : ↑↑

Pathophysiology

2. Diuretic phase

- Polyuria in this phase is due to **partial** recovery of the tubules (incomplete power of the tubules to reabsorb the filtered water)
- The kidney tubules still unable to concentrate urine).
- oThe urine output increases (up to 10 L/d) but it may take several days before the creatinine starts to drop.
- Dehydration & hypokalemia may occur

Pathophysiology

3. Post diuretic phase:

- Convalescent phase
- may takes weeks or months
- there is complete recovery with improvement of the general health
- normalization of the chemistry occur

Clinical picture

1. Oliguric phase: (2-4 weeks)

- A. Oliguria : ↓ urine output < 400 cc/d.
- B. Manifestations of hyporvolemia: in cases of acute renal failure due to pre renal causes e.g. marked reduction of blood pressure with oligurea, decreased skin turger, reduced jugular venous pressure and dry mucous membranes.
- C. Manifestations of hypervolemia: in cases of acute renal failure due to intrinsic renal disease
 - Headache.
 - Congested neck vein.
 - Pulmonary edema.
 - Hypertension.
 - Edema lower limb.

Clinical picture

1. Oliguric phase:

D. Manifestations of hyponatremia: Convulsion, Confusion,Coma.

E. Manifestations of hyperkalemia:

- Skeletal muscle : weakness, flaccid paralysis, areflexia.
- Smooth muscle: Intestinal colic, nausea, vomiting.
- Cardiac muscle: Arrhythmias & can progress to cardiac arrest.

F. Manifestations of uremia:

- Anorexia, nausea, vomiting.
- Pericarditis, Bleeding.
- Convulsion, Confusion, Coma.

Clinical picture

2. Diuretic phase:

- Improvement of general condition.
- Urine out put 3-5 L /d
- Dehydration & hypokalemia may occur

3. Post diuretic phase : Convalescent phase

- Improvement of the general health & normalization of the chemistry
- It may takes weeks or months.
- Urine output becomes normal volume, concentrated.

Investigations

1. To diagnose ARF

A. Urine examination:

Oliguria with low fixed specific gravity

B. Biochemical changes:

- Azotemia : ↑ Urea & creatinine.
- Creatinine clearance :↓
- Na:↓(dilutional hyponatremia)
- K:↑
- PO4:↑&↓ *Ca*
- ↓ Hco3

C. Ultrasound: Normal diameter.

Investigations

1. To Diagnose the cause:

A. Urinary Indices

Laboratory test	Prerenal azotemia	ARF
Urine osmolality (m0sm/kg)	>500	<400
Urine sodium level (mEq/l)	<20	>40
Urine/plasma creatinine ratio	>40	<20
Fractional excretion of sodium (%) <1	>2
Fractional excretion of urea (%)	<35	>35

Fractional Excretion of Sodium

$$FE_{Na}{=}100 \times \frac{\text{sodium}_{\text{urinary}} \times \text{creatinine}_{\text{plasma}}}{\text{sodium}_{\text{plasma}} \times \text{creatinine}_{\text{urinary}}}$$

- FENa < 1 indicates an intact tubular function.
- FENa > 1 indicates euvolemia or tubular dysfunction.

Investigations

B. In renal causes:

- Muddy-brown granular cast: in ATN.
- Pigmented cast in myoglobinuria.
- White cells cast in AIN.
- Red cell casts: in AGN
- Pus cells : in acute pyelonephritis
- C. In post renal causes: to detect the cause of obstruction
 - Rerograde pyelography & angiography.
 - Plain film of the abdomen: to detect the stones.

Indications of Renal Biopsy in AKI

- 1. Clinical and laboratory findings suggesting Glomerular or Interstitial nephritis
- 2. Unknown cause
- 3. Prolonged ATN

1. Oliguric phase:

- The aim of management is to keep the patient alive until spontaneous recovery of renal function occurs.
- Urinary catheter : to assess urine volume & to exclude post-renal cause.
- Central venous catheter: to assess the blood volume.
- Immediate volume infusion to prevent ATN.
- Fluid balance l.e, daily fluid intake should equal urine output plus losses from fistulae and from vomiting plus an allowance of 500 ml daily for insensible loss.
- Acidosis treated with I.V sodium bicarbonate.

1. Oliguric phase: (cont.)

Control blood pressure.

Diet

- Sodium and potassium restriction with rare exception.
- Protein restriction to 40 gm/day if it is hoped to avoid dialysis.
- Patients treated by dialysis must receive 70 gm/day protein.
- Hypercatabolic patients will require an even higher nitrogen intake to prevent negative nitrogen balance.

• Hyperkalemia :

- Acidosis correction: NaHCO3.
- Ca gluconate (slowly infusion)
- Insulin + glucose fintracellular shift of K.
- Dialysis.

1. Oliguric phase:

- Indication of dialysis in patients with ARF
 - Bad general condition (severe symptoms)
 - Marked acidosis
 - Serum K > 7 or if not controlled by the conservative measures
 - Pulmonary edema
 - pericarditis

2. Diuretic phase

- Adequate fluid to avoid dehydration.
- Na and K supplements.

THANKS

AKI Definition and staging:

• Most recently the international guideline group, Kidney Disease: Improving Global Outcomes (KDIGO) has made a definition and staging system

KDIGO Definition of AKI

- Increase in SCr by ≥ 0.3 mg/dl within 48 hours; or
- Increase in SCr to ≥ 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days; or
- Urine volume < 0.5 ml/kg/h for 6 hours.

Staging of AKI

• Patients that meet the definition for AKI can be staged according to whichever criteria (serum creatinine or urine output) gives them the highest stage.

Stage	Serum creatinine	Urine output
1	1.5–1.9 times baseline OR \geqslant 0.3 mg/dl (\geqslant 26.5 μ mol/l) increase	<0.5 ml/kg/h for 6–12 hours
2	2.0–2.9 times baseline	$<$ 0.5 ml/kg/h for \geqslant 12 hours
3	3.0 times baseline OR Increase in serum creatinine to ≥4.0 mg/dl (≥353.6 µmol/l) OR Initiation of renal replacement therapy OR, In patients <18 years, decrease in eGFR to <35 ml/min per 1.73 m²	<0.3 ml/kg/h for ≥24 hours OR Anuria for ≥12 hours