Neurological disorders -I

Dr. Abdelrahim A. Sadek (MD Pediatrics)

MICROCEPHALY

Definition

Microcephaly is head circumference that measures more than three standard deviations below the mean for age and sex.

This condition is relatively common, particularly among developmentally delayed children.

there are many causes of microcephaly,

 abnormalities in neuronal migration during fetal development, including heterotopias of neuronal cells and cytoarchitectural derangements, are often found Microcephaly may be subdivided into 2 main groups:

primary (genetic)microcephaly and secondary (nongenetic) microcephaly.

A precise diagnosis is important for genetic counseling and for prediction for future pregnancies

Primary Microcephaly

- Primary microcephaly refers to a group of conditions that usually have no associated malformations
- follow a mendelian pattern of inheritance or are associated with a specific genetic syndrome.

Affected infants are usually identified at birth because of a small head circumference.

The more common types include familial and autosomal dominant microcephaly and a series of chromosomal syndromes. Primary microcephaly is also associated with at least 7 gene loci, and 7 single etiologic genes have been identified.

■ It is known as autosomal recessive primary microcephaly and has autosomal inheritance.

- Many X-linked causes of microcephaly are caused by gene mutations that lead to severe structural brain malformations such as
- lissencephaly,
- holoprosencephaly,
- polymicrogyria,
- cobblestone dysplasia,
- neuronal heterotopia,
- pontocerebellar hypoplasia; these should be sought on MRI.

Secondary microcephaly

Secondary microcephaly results from a large number of noxious agents that can affect a fetus in utero or an infant during periods of rapid brain growth, particularly the 1st 2 yr of life.

Acquired microcephaly can be seen in conditions such as

- Rett,
- Seckel,
- Angelman syndromes
- encephalopathy syndromes associated with severe seizure disorders.

A-PRIMARY (GENETIC)

1-Familial (autosomal recessive)

- Incidence 1 in 40,000 live births
- Typical appearance with slanted forehead, prominent nose and ears; severe mental retardation
- prominent seizures;
- surface convolutional markings of the brain, poorly differentiated and disorganized cytoarchitecture

2-Autosomal dominant

- Nondistinctive facies, upslanting palpebral fissures, mild forehead slanting, and prominent ears
- Normal linear growth,
- seizures readily controlled,
- mild or borderline mental retardation

Syndromes

Down (trisomy 21)

- Incidence 1 in 800 live births
- Abnormal rounding of occipital and frontal lobes and a small cerebellum; narrow superior temporal gyrus,
- propensity for Alzheimer neurofibrillary alterations, ultrastructure abnormalities of cerebral cortex

Edward (trisomy 18)

- Incidence 1 in 6,500 live births
- Low birth weight, microstomia, micrognathia, low-set malformed ears, prominent occiput, rocker-bottom feet, flexion deformities of fingers, congenital heart disease, increased gyri, heterotopias of neurons

Cri-du-chat (5 p-)

- Incidence 1 in 50,000 live births
- Round facies, prominent epicanthic folds, low-set ears, hypertelorism, characteristic cry
- No specific neuropathology

B-SECONDARY (NONGENETIC)

1-Congenital Infections

A-Cytomegalovirus

- Small for dates,
- petechial rash,
- hepatosplenomegaly,
- chorioretinitis,
- deafness,
- mental retardation,
- seizures,
- Central nervous system calcification and microgyria

B-Rubella

- Growth retardation,
- purpura,
- thrombocytopenia,
- hepatosplenomegaly,
- congenital heart disease,
- chorioretinitis,
- cataracts,
- Deafness
- Perivascular necrotic areas, polymicrogyria, heterotopias, subependymal cavitations

C-Toxoplasmosis

 Purpura, hepatosplenomegaly, jaundice, convulsions, hydrocephalus, chorioretinitis, cerebral calcification

2-Drugs

Fetal alcohol

 Growth retardation, ptosis, absent philtrum and hypoplastic upper lip, congenital heart disease, feeding problems, neuroglial heterotopia, disorganization of neurons

Fetal hydantoin

 Growth delay, hypoplasia of distal phalanges, inner epicanthic folds, broad nasal ridge, anteverted nostrils

3-Other Causes

- Radiation most severe with exposure before 15th wk of gestation
- Meningitis/encephalitis Cerebral infarcts, cystic cavitation, diffuse loss of neurons
- Malnutrition Controversial cause of microcephaly

- Metabolic Maternal diabetes mellitus and maternal hyperphenylalaninemia
- Hyperthermia Significant fever during 1st 4-6 wk has been reported to cause microcephaly, seizures, and facial anomalies
- Hypoxic-ischemic encephalopathy: Initially diffuse cerebral edema; late stages characterized by cerebral atrophy and abnormal signals on MRI

CLINICAL MANIFESTATIONS AND DIAGNOSIS

- A thorough family history should be taken, seeking additional cases of microcephaly or disorders affecting the nervous system.
- It is important to measure a patient's head circumference at birth to diagnose microcephaly as early as possible.
- A very small head circumference implies a process that began early in embryonic or fetal development.

An insult to the brain that occurs later in life, particularly beyond the age of 2 yr, is less likely to produce severe microcephaly.

- Serial head circumference measurements are more meaningful than a single determination, particularly when the abnormality is minimal.
- The head circumference of each parent and sibling should be recorded.

Laboratory investigation of a microcephalic child is determined by the history and physical examination. If the cause of the microcephaly is unknown, the mother's serum phenylalanine level should be determined.

 High phenylalanine serum levels in an asymptomatic mother can produce marked brain damage in an otherwise normal nonphenylketonuric infant. A karyotype and/or array comparative genomic hybridization study is obtained if a chromosomal syndrome is suspected or if the child has abnormal facies, short stature, and additional congenital anomalies. • MRI is useful in identifying structural abnormalities of the brain such as lissencephaly, pachygyria, and polymicrogyria, and CT scanning is useful to detect intracerebral calcification.

Additional studies include

- a fasting plasma and urine amino acid analysis;
- serum ammonia determination;
- toxoplasmosis, rubella, cytomegalovirus, and herpes simplex (TORCH) titers as well as HIV testing of the mother and child;
- a urine sample for the culture of cytomegalovirus.
- Single-gene mutations as a cause of both primary microcephaly and syndromic microcephaly are being increasingly identified.

Clinical picture(General)

- Slanted forehead, prominent nose and ears.
- Severe mental retardation.
- Seizures
- Serial measurement of head detects arrest or limited head growth.

Differential Diagnosis

Cranniostenosis

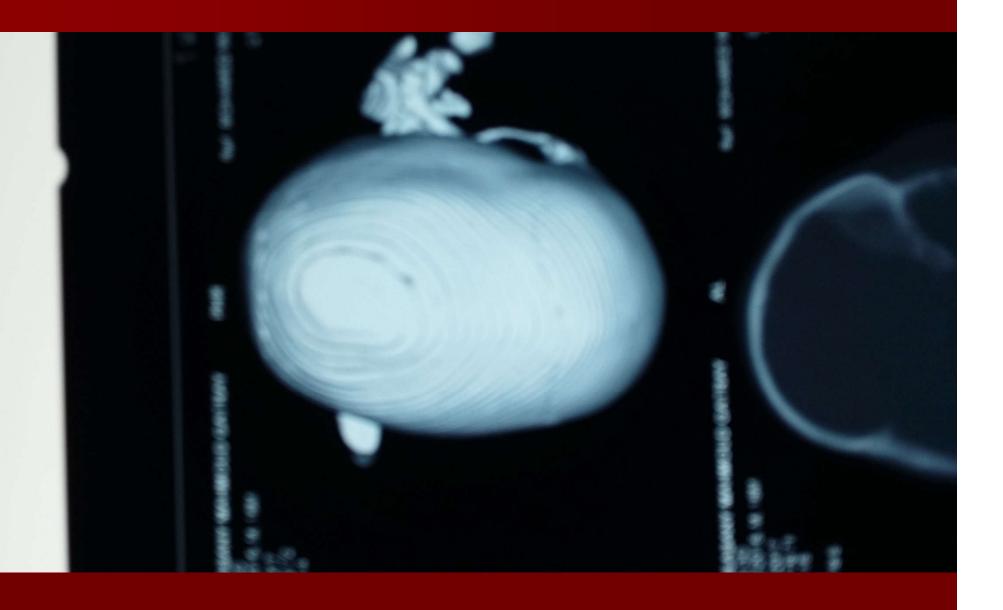
Treatment

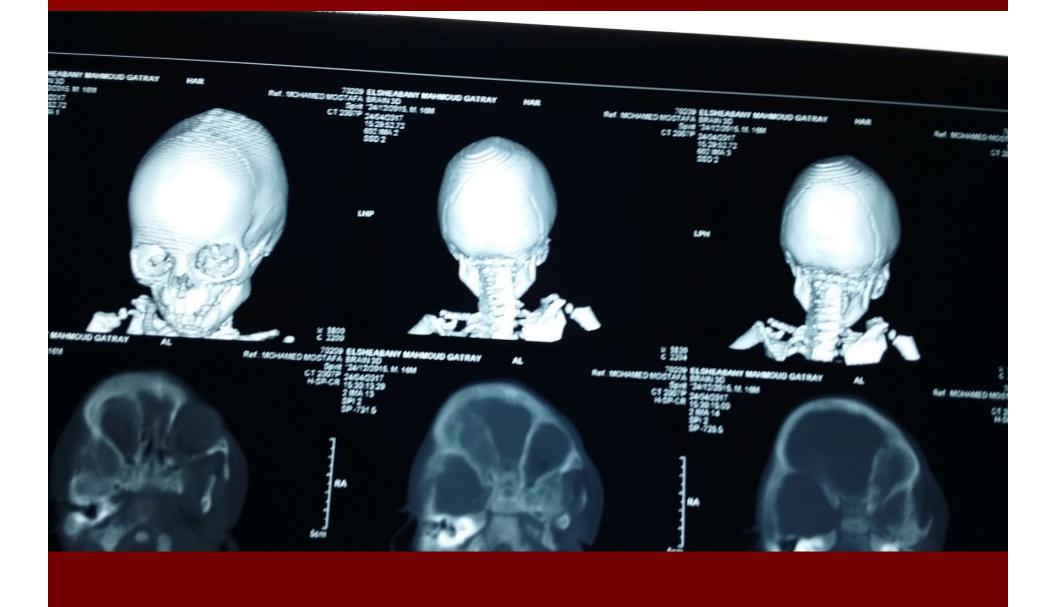
- Supportive: for seizures and social handicaps
- Advice parents about recurrence risk in future pregnancy

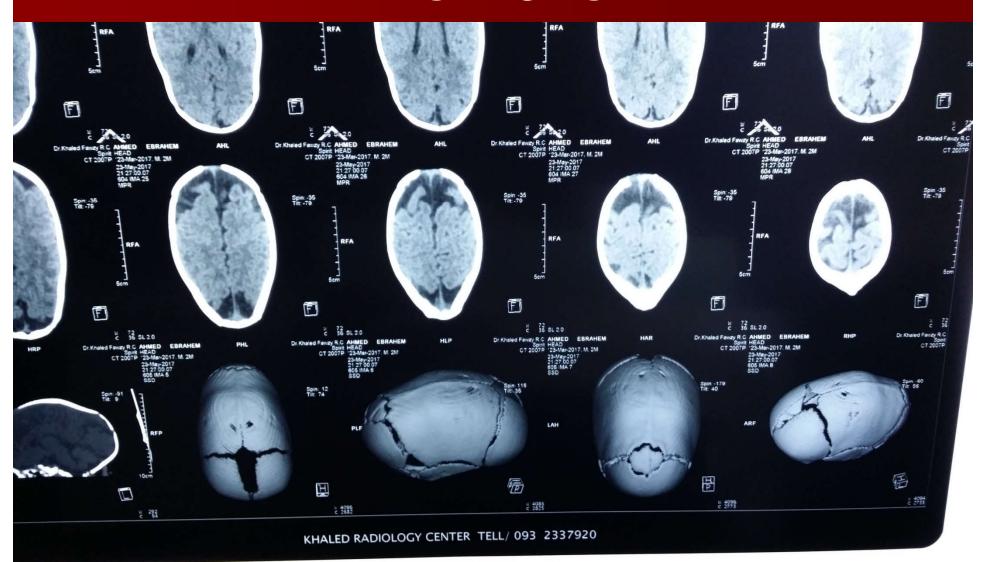
CRANIOSTENOSIS

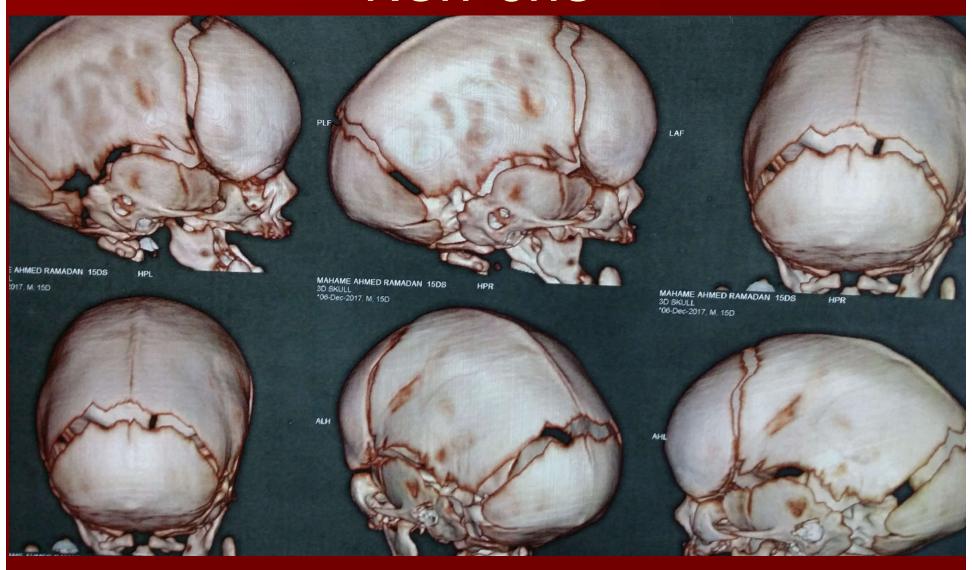
Definition:

Craniostenosis is premature closure of one or more of skull suture. It may be isolated craniostenosis or syndromic craniostenosis.


Clinical picture


- Skull Deformity
 - Scaphocephaly_:long and narrow skull due to closure of sagittal suture.
 - Brachycephaly: The skull is short anteroposteriorly and extends laterally and superiorly.
 - Other deformities: according to the closed suture.
- Bony ridges over closed sutures.
- Convulsions may occur
- Signs of increased intracranial pressure
- It may be associated with some syndromes and include fusion of fingers and toes.





New one

New one

- The most prevalent genetic disorders associated with craniosynostosis include
- Crouzon,
- Apert,
- Carpenter,
- Chotzen,
- and Pfeiffer syndromes.

- Crouzon syndrome is characterized by premature craniosynostosis and is inherited as an autosomal dominant trait.
- The shape of the head depends on the timing and order of suture fusion
- most often is a compressed back-to-front diameter or brachycephaly resulting from bilateral closure of the coronal sutures.

The orbits are underdeveloped, and ocular proptosis is prominent.

Hypoplasia of the maxilla and orbital hypertelorism are typical facial features.

Investigations

Skull X ray

skull deformity, fusion of sutures, signs of increased intracranial tension(beaten silver appearance and wide sella turcica .(

CT:

manifestations of increased intracranial pressure may be seen

Treatment

Early surgical craniectomy of the affected sutures is essential for management of increased intracranial pressure (ICP) with good results.

INCREASED INTRACRANIAL PRESSURE

Definition

■ The intracranial pressure (ICP) exceeds the normal value. Normal value of ICP is less than 160mm of water.

Etiology

The brain is positioned in a rigid bony skull. Increase of any of the contents inside the skull lead to increased the tension.

1-Infections

- Meningitis
- Cerebral abscess
- Tuberculoma

2-Fluid

- Intracranial hemorrhage
- Hydrocephalus
- Cerebral edema: after trauma or hypoxia or infection

3-Mass

- Leukemia
- Other brain tumors

4-Pseudotumor Cerebri(benign increase ICP)

- Hypervitaminosis A and vitamin A deficiency.
- Tetracycline therapy
- Metabolic disorders like galactosemia.
- infections

Clinical picture

- In infants (before closure of fontanelle and sutures)
 - Irritability, lethargy and morning vomiting
 - Large sized head
 - Tense bulging anterior fontanel
 - Distended scalp veins

In older children (After closure of fontenelles and sutures)

- Irritability, lethargy and morning vomiting
- Headache
- Diplpia, papilledema and visual disturbance
- Sixth nerve paralysis
- Coma and disturbed conscious level
- Bradycardia, hypertension and irregular respiration

Investigations


Radiological
 1-Skull X ray
 wide separated sutures, beaten silver appearance and wide sella turcica

2-CT or MRI: to find cause as hydrocephalus, abscess or mass.

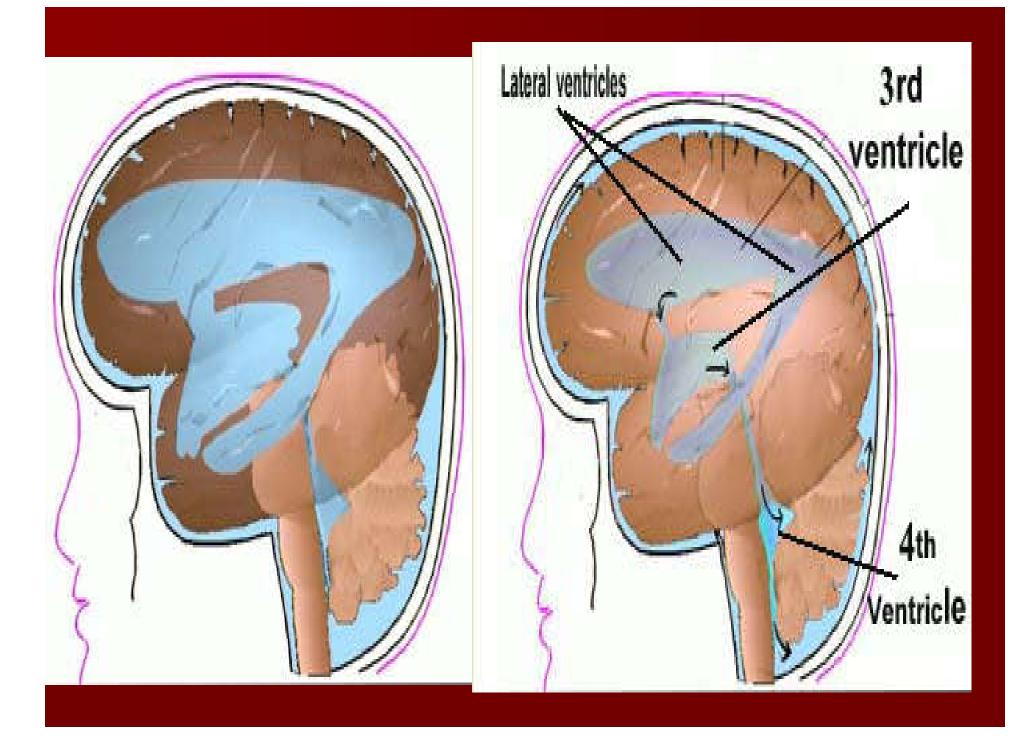
Laboratory

According to suspected etiology

Treatment

- Treatment of the etiology
- Reduction of increased ICP:
 - a- Mannitol IV infusion

b-Acetazolamide (10-30 mg/kg/24 hr) & corticosteroids have been used in cases of pseudotumour cerebri.


HYDROCEPAHLUS

Definition

Accumulation of CSF within the head that result from impaired circulation and absorption of CSF or rarely from increased production by a choroid plexus papilloma.

CSF Circulation

- CSF is formed mainly in the ventricular system by the choroid plexus which is located in the lateral, third and fourth ventricles)
- CSF flows from the lateral ventricles to the third ventricle through foramina of Monro.
- CSF then flows from third ventricle to fourth ventricle through the narrow aqueduct of Sylvius.
- CSF then leaves fourth ventricle to the subarachnoid space through foramina of Luschka and foramen of Magendie.
- CSF is absorbed mainly by the arachnoid villi and to a much less extent by the lymphatic channels and by the choroid plexus itself.

 Hydrocephalus results from obstruction within the ventricular system is called obstructive or noncommunication hydrocephalus.

 Hydrocephalus results from obstruction within the subarachnoid space or malfunction of the arachnoid villi is called non *obstructive or communicating hydrocephalus*.

Etiology:

1-Obstructive or noncommunicating hydrocephalus

A-Congenital

- Aqueductal stenosis: X linked recessive disease.
- Chiari malformation type II; it results from elongation of fourth ventricle and kinking of brainstem, with displacement of the inferior vermis, pons and medulla into the cervical canal. Hydrocephalus and myelomeningocele are present
- Malformation of vein of Galen
- Dandy-Walker syndrome; cystic dilatation of fourth ventricle and cerebellar atrophy.

B-Acquired

 Aqueductal gliosis; from neonatal meningitis or intracranial hemorrhage especially in preterm infants.

Posterior fossa tumor, cysts or abscess.

2-Nonobstructive or communicating hydrocephalus

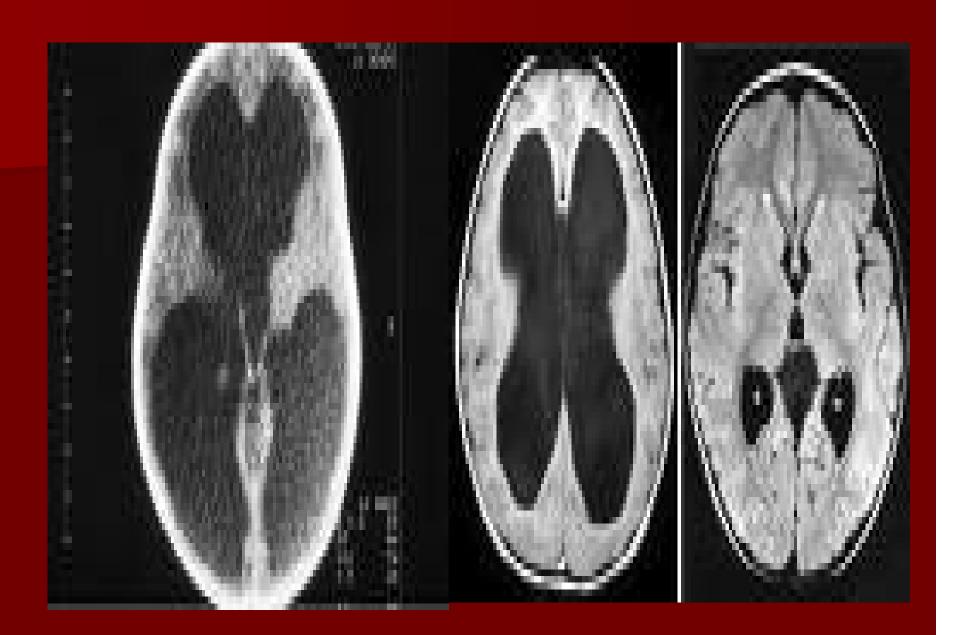
- Subarachnoid hemorrhage especially in preterm infants
- Pneumococcal and tuberculous meningitis
- Intrauterine intracranial infections as toxoplasmosis and cytomegalovirus
- Leukemic infiltrates.

Clinical picture

- Infants and before closure of the fontanelle.
 - Skull:
 - Large size and progressive increased in size with repeated measurements
 - Separation of sutures
 - Fontanelles are widely opened. Anterior fontanel is tense and bulging.
 - Scalp skin is stretched and thin with dilated veins.
 - McEwen sign: cracked pot percussion note of the skull due to separation of sutures
 - Bruit is auscultated in cases vein of Galen malformation.
 - Transillumination is positive with massive ventricular dilatation.

Infants and before closure of the fontanelle

- Eyes: deviate downwards giving sunset appearance. Optic atrophy may occur.
- Pyramidal tract lesions: brisk tendon reflexes,
 Spasticity, clonus and positive Babiniski sign .
- Abnormal midline lesions as meningocele and skin tuft may be present
- Irritability, lethargy, poor appetite and vomiting are common.



Older children

- Skull :
 - Increase in size is less prominent
 - Sutures are partially closed
- Headache is the most prominent feature
- Deterioration in school performance
- Irritability, lethargy, poor appetite and vomiting are common

Investigations

- Radiological
 - Skull X ray
 - Large size with separated sutures and wide fontanelles.
 - Wide sella turcica
 - May be erosion of posterior clenoids and beaten silver appearance.
 - Transcranial ultrasound; is useful for diagnosis
 - CT and MRI: to detect early hydrocephalus and etiology of hydrocephalus

Laboratory

■ TORCH screen: may be positive in cases of intrauterine infections

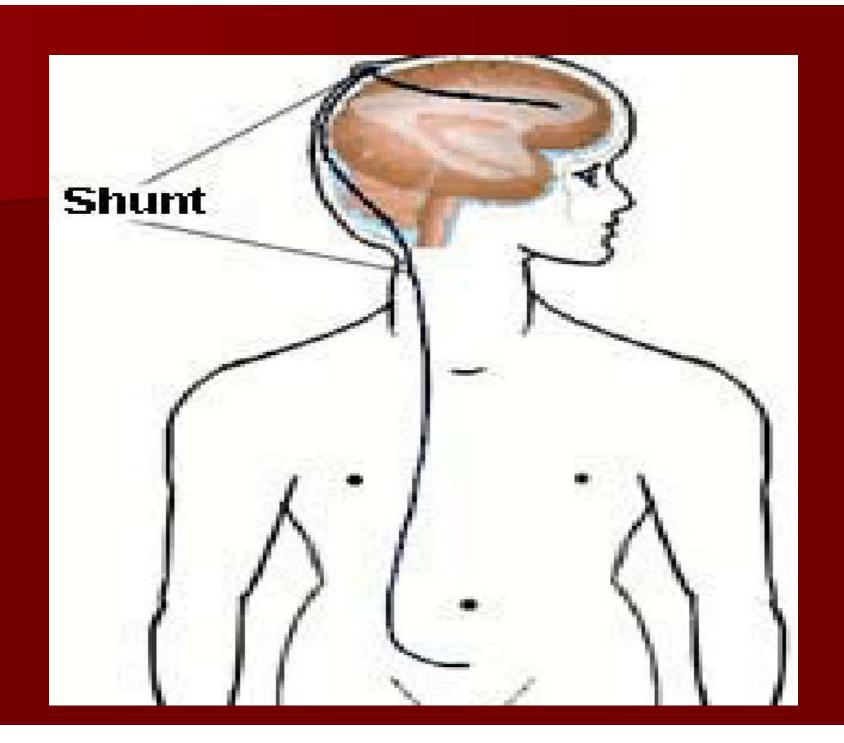
Differential Diagnosis Other causes of large head

- 1-Cranial (skull) causes
 - Rickets
 - Achondroplasia
 - Cretinism
 - Chronic hemolytic anemia
 - Familial large head
 - Metabolic and degenerative diseases as mucopolysaccharidosis.

2-Intracranial causes

- Subdural effusion or hemorrhage
- Brain tumors
- Brain cysts
- Chronic brain abscess
- Hydranencephaly
- Metabolic and degenerative diseases

Treatment


1-Medical

- Treatment of the cause
- Diuretics: Acetazolamide and furosemide to reduce CSF flow. It is only temporary treatment.

2-Surgical

 Extracranial shunt especially ventriculoperitoneal shunt to drain CSF from right lateral ventricle to peritoneal cavity.

This is done by silicone rubber tube passing in the subcutaneous tissues. Shunt infection is the major complication.

